Optimization Strategies for Online Large-Margin Learning in Machine Translation
نویسنده
چکیده
The introduction of large-margin based discriminative methods for optimizing statistical machine translation systems in recent years has allowed exploration into many new types of features for the translation process. By removing the limitation on the number of parameters which can be optimized, these methods have allowed integrating millions of sparse features. However, these methods have not yet met with wide-spread adoption. This may be partly due to the perceived complexity of implementation, and partly due to the lack of standard methodology for applying these methods to MT. This papers aims to shed light on large-margin learning for MT, explicitly presenting the simple passive-aggressive algorithm which underlies many previous approaches, with direct application to MT, and empirically comparing several widespread optimization strategies.
منابع مشابه
Online Relative Margin Maximization for Statistical Machine Translation
Recent advances in large-margin learning have shown that better generalization can be achieved by incorporating higher order information into the optimization, such as the spread of the data. However, these solutions are impractical in complex structured prediction problems such as statistical machine translation. We present an online gradient-based algorithm for relative margin maximization, w...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملOnline Learning Approaches in Computer Assisted Translation
We present a novel online learning approach for statistical machine translation tailored to the computer assisted translation scenario. With the introduction of a simple online feature, we are able to adapt the translation model on the fly to the corrections made by the translators. Additionally, we do online adaption of the feature weights with a large margin algorithm. Our results show that o...
متن کاملMr. MIRA: Open-Source Large-Margin Structured Learning on MapReduce
We present an open-source framework for large-scale online structured learning. Developed with the flexibility to handle cost-augmented inference problems such as statistical machine translation (SMT), our large-margin learner can be used with any decoder. Integration with MapReduce using Hadoop streaming allows efficient scaling with increasing size of training data. Although designed with a f...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کامل